Validation of Workload Algorithms Within the Integrated Performance Modeling Environment

Joe Armstrong
CAE Professional Services
Overview

- Background
- Project Goals
- Methodology
- Project Results
- Discussion & Conclusion
Workload Measurement

- Categories of Workload Measurement
 - Workload Assessment
 - Measurement of operator workload in complex systems
 - Workload Prediction
 - Computational models
 - Performance Prediction
Algorithmic/Predictive Measures

- **Applications**
 - Diagnostic workload predictions
 - Implemented within Computational Simulations
 - Mathematical/Algorithmic
 - Task Analysis
 - Computer Simulation

- **Major Categories**
 - Discrete Event Simulations (Task Network Modelling)
 - Cognitive Architectures
Task Network Modelling
Task Network Modeling

- General Assumptions
 - Human Behaviour Modelled as Interrelated Tasks
 - Performance Values Assigned by Modeller

- Sequences managed by a discrete event simulator
 - IPME™
 - IMPRINT™
 - SAINT/MicroSAINT
Workload Algorithms
State/Resource Algorithms

- Measure level of task demands
 - Attentional Demand Analysis Algorithm (VACP)
 - Workload Index (W/Index)

- Derivations
 - VACP
 - McCracken and Aldritch (1984); Szabo & Bierbaum (1986); Bierbaum et al. (1989)
 - W/INDEX
 - Honeywell Systems and Research Center (1983)
 - North & Riley (1986)
General Model

Process Request, Develop Plan

Data Processing, Exploitation

Fusion

Dissemination

VIS – Visual
AUD – Auditory
COG – Cognitive
MOT – Psychomotor
Within
Interference
Workload
Num Tasks

Attentional Demand
W/Index

General Model

Process Request, Develop Plan

Data Processing, Exploitation

Fusion

Dissemination

VIS – Visual
AUD – Auditory
COG – Cognitive
MOT – Psychomotor
Within
Interference
Workload
Num Tasks

Attentional Demand
W/Index

General Model

Process Request, Develop Plan

Data Processing, Exploitation

Fusion

Dissemination

VIS – Visual
AUD – Auditory
COG – Cognitive
MOT – Psychomotor
Within
Interference
Workload
Num Tasks

Attentional Demand
W/Index

General Model

Process Request, Develop Plan

Data Processing, Exploitation

Fusion

Dissemination

VIS – Visual
AUD – Auditory
COG – Cognitive
MOT – Psychomotor
Within
Interference
Workload
Num Tasks

Attentional Demand
W/Index
State/Resource Algorithms

- Predictive Validity
 - Subjective Comparison
 - In-flight studies (Cain, 1997)

- Task Performance
 - Moderate correlation with Flight-Simulator data (Sarno & Wickens, 1995)
Scheduler/Performance Algorithms

- Qualitatively Different than VACP or W/INDEX
 - Measure impact of task demands and on task performance
 - Simulates scheduling of tasks based on demand

- Two Major Theories
 - IP/PCT (Hendy & Farrell, 1997)
 - POP (Farmer, 2000; Jordan & Farmer, 1995)

- New merged concept
 - POPIP (Fowles-Winkler et al., 2004)
The IP Model

- IP Model (Hendy & Farrell, 1997)
 - Impact of quantity of information and time to process
 - Limits on rate of processing
 - Concept of Time Pressure

\[
\text{Time Pressure} \propto \frac{\text{Amount of Information to be processed}}{\text{Time Available}}
\]

- Impact of Task Priority
- Short Term Memory (STM) model
The IP Model

- Validation
 - Few reported studies (Cain and Hendy, 1998)
 - Many values set at arbitrary levels
 - Some face validity
 - Lack of specific validation
The POP Model

- POP (Farmer, 2002)
 - Influence of Task Demands
 - Based on DRAWS Ratings
 - Divisible task demands
 - Input, Central, Output

- Task Interference
 - Structural
 - Same hand/digit
 - Overload
 - 2+ tasks demand same channel
The POP Model

- Task Deferring
 - POP determines multiple task workload within a channel

- Tasks deferred based on priority
 - All tasks can be deferred
 - All tasks are remembered, and always processed
The POPIP Model

- Hybrid POP and IP Model (Fowles-Winkler et al, 2004)
 - POP Task Interference + Deferment and Shedding of IP
 - Structural Interference (IP)
 - Non-Structural Interference (POP)
 - Shedding/Deferral (IP)
 - Applies STM model
Model Validity

- Studies
 - Validation of task ratings (Farmer et al., 1995b; Jordan et al., 1996)
 - Initial POP Validation
 - Bakan Validation (Belyavin & Farmer, 2006)
 - No Current POPIP Validation
Project Goals

- Validate Workload Algorithms
 - VACP & W/Index
 - IP/PCT
 - POP
 - POPIP
Project Goals

- Levels of Validation
 - Construct/Content Validity
 - Is the model built on appropriate principles
 - Predictive Validity
 - Do the models predict performance
Project Goals

- Task Network Validity
 - Rating Allocation
- Model Algorithms
- State Predictions
- Overall Performance
Task Environment

- Simulated Air Traffic Control
 - Aircraft Routing
 - Time Pressure
 - Collision Avoidance

- Visual Bakan Task (Belyavin & Farmer, 2006)
 - Perception and Decision Process
 - Mental Rehearsal
Methodology

- **Pilot Study**
 - Single Threaded
 - Generate Baseline Datasets
 - Bakan and ATC
 - Independent participant

- **Lab Evaluation**
 - Multi-threaded
 - Workload Variations
 - Single Threaded
 - Multi-threaded
 - Independent Participants
Task Environment

Radar Plot

ATC Schedule Window

Bakan

3
Methodology

<table>
<thead>
<tr>
<th>Pilot Study</th>
<th>ATC Settings</th>
<th>No. of aircraft</th>
<th>Length of update interval</th>
<th>No. of airports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td>5</td>
<td>9 sec.</td>
<td>1</td>
</tr>
<tr>
<td>Bakan Settings (3 Digit)</td>
<td>Display Duration</td>
<td>500 ms</td>
<td></td>
<td>ISI 2000 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experimental Evaluation</th>
<th>ATC Settings</th>
<th>No. of aircraft</th>
<th>Length of update interval</th>
<th>No. of airports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td>5</td>
<td>9 sec.</td>
<td>1</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>5</td>
<td>6 sec.</td>
<td>1</td>
</tr>
<tr>
<td>Bakan Settings (3 Digit)</td>
<td>Display Duration</td>
<td>500 ms</td>
<td></td>
<td>ISI 2000 ms</td>
</tr>
</tbody>
</table>
Results Overview

- Workload Data
 - Primary Validation
 - Initial Results for Mental and Physical Predictions
 - VACP, POP, POPIP
 - No IP Time Pressure

- Performance Data
 - Secondary Validation
 - ATC and Bakan Error Data
Predicted Workload

<table>
<thead>
<tr>
<th></th>
<th>Physical</th>
<th>Mental</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACP</td>
<td>Underestimate</td>
<td>Single vs. Multi-Threaded</td>
</tr>
<tr>
<td>POP</td>
<td>Reasonable</td>
<td>Moderate Overestimate</td>
</tr>
<tr>
<td>POPIP</td>
<td>Reasonable</td>
<td>Moderate Overestimate</td>
</tr>
<tr>
<td>IP</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

![Graph showing predicted workload](image)

16th BRIMS Conference 26-29 March 2007
ATC Performance

MisDirection Errors

Proportion of Errors

Task

ATCLow ATCHigh ComboLow ComboHigh

BRIMS Conference 26-29 March 2007
Bakan Performance

Bakan Omission Errors

Bakan Comission Errors (False Alarms)

Predicted Performance

<table>
<thead>
<tr>
<th></th>
<th>ATC Misdirections</th>
<th>Bakan Omission Errors</th>
<th>Bakan Comission Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACP</td>
<td>Overestimate</td>
<td>Single vs. Multi-Threaded</td>
<td>Single vs. Multi-Threaded</td>
</tr>
<tr>
<td>POP</td>
<td>Overestimate</td>
<td>Reasonable</td>
<td>Underestimate</td>
</tr>
<tr>
<td>POPIP</td>
<td>Overestimate</td>
<td>Reasonable</td>
<td>Underestimate</td>
</tr>
<tr>
<td>IP</td>
<td>Overestimate</td>
<td>Reasonable</td>
<td>Underestimate</td>
</tr>
</tbody>
</table>

16th BRIMS Conference 26-29 March 2007
Discussion

- Model Predictions
 - Dissociation between Workload and Performance
 - Demonstration of Scheduling Effects
 - Sensitivity of Models to Workload Extremes
 - Lack of Variability in Workload Data
 - Algorithm Implementation Issues
Conclusion

- Future Research
 - Continue Validation Effort
 - Iterative Process
 - Link Models to ATC Simulator
 - Expand Human Data-Capture Capability
 - Improve variability in workload predictions
 - Verify Model Implementation Issues
Thanks to the Project Team

- DRDC Toronto
 - Dr. Wenbi Wang
 - Mr. Brad Cain

- QinetiQ
 - Dr. Andrew Belyavin
 - Mr. Chris Ryder

- CAE PS
 - Mr. Joe Armstrong
 - Mr. Gerald Lai
 - Ms. Michelle Gauthier
 - Ms. Neda Faregh